

TRANSFER CHARACTERISTICS Derivation

For the BJT transistor the output current I_C and the input controlling current I_B are related by beta, which was considered constant for the analysis to be performed. In equation form,

$$I_C = f(I_B) = \beta I_B \quad (6.2)$$

control variable
↓
constant

In Eq. (6.2) a linear relationship exists between I_C and I_B . Double the level of I_B and I_C will increase by a factor of two also.

Unfortunately, this linear relationship does not exist between the output and input quantities of a JFET. The relationship between I_D and V_{GS} is defined by *Shockley's equation* (see Fig. 6.16):

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \quad (6.3)$$

control variable
↓
constants

The transfer curve can be obtained using Shockley's equation or from the output characteristics of Fig. 6.11. In Fig. 6.17 two graphs are provided, with the vertical scaling in milliamperes for each graph. One is a plot of I_D versus V_{DS} , whereas the other is I_D versus V_{GS} . Using the drain characteristics on the right of the "y" axis, we can draw a horizontal line from the saturation region of the curve denoted $V_{GS} = 0$ V to the I_D axis. The resulting current level for both graphs is I_{DSS} . The point of intersection on the I_D versus V_{GS} curve will be as shown since the vertical axis is defined as $V_{GS} = 0$ V.

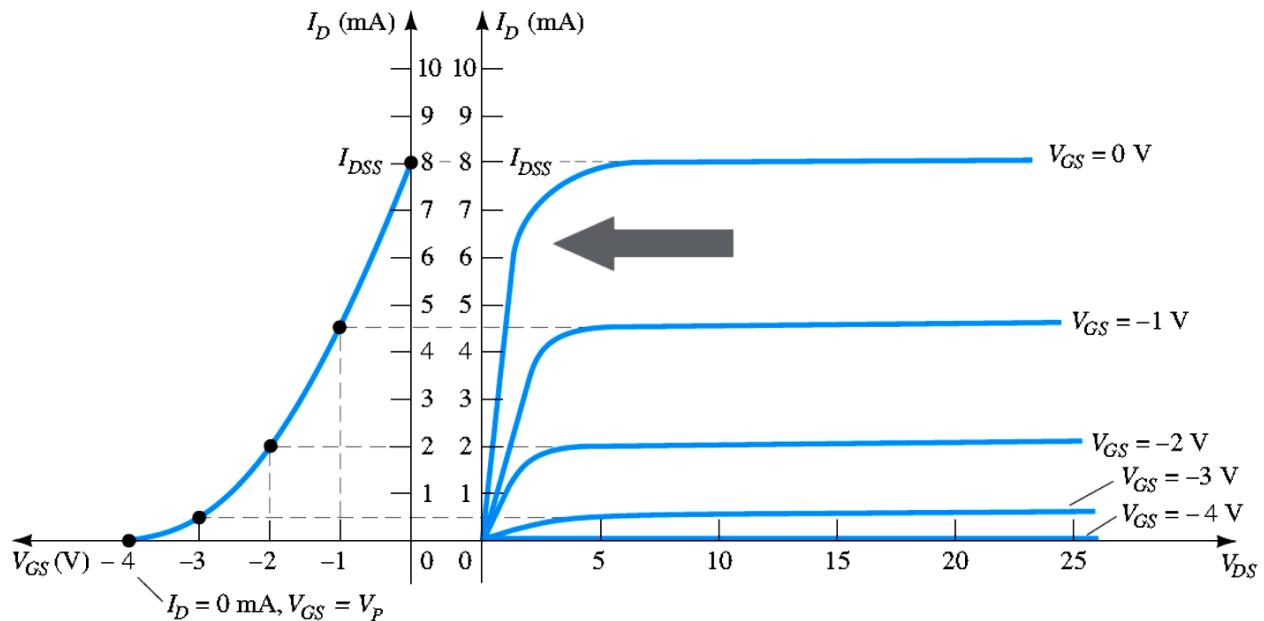


FIG. 6.17
Obtaining the transfer curve from the drain characteristics.

In review:

$$\boxed{\text{When } V_{GS} = 0 \text{ V, } I_D = I_{DSS}} \quad (6.4)$$

When $V_{GS} = V_P = -4 \text{ V}$, the drain current is 0 mA, defining another point on the transfer curve. That is:

$$\boxed{\text{When } V_{GS} = V_P, \quad I_D = 0 \text{ mA}} \quad (6.5)$$

Applying Shockley's Equation

The transfer curve of Fig. 6.17 can also be obtained directly from Shockley's equation (6.3) given simply the values of I_{DSS} and V_P . The levels of I_{DSS} and V_P define the limits of the curve on both axes and leave only the necessity of finding a few intermediate plot points. The validity of Eq. (6.3) as a source of the transfer curve of Fig. 6.17 is best demonstrated by examining a few specific levels of one variable and finding the resulting level of the other as follows:

Substituting $V_{GS} = 0 \text{ V}$ gives

$$\begin{aligned} \text{Eq. (6.3): } I_D &= I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \\ &= I_{DSS} \left(1 - \frac{0}{V_P} \right)^2 = I_{DSS}(1 - 0)^2 \end{aligned}$$

and

$$\boxed{I_D = I_{DSS} \mid V_{GS}=0 \text{ V}} \quad (6.6)$$

Substituting $V_{GS} = V_P$ yields

$$\begin{aligned} I_D &= I_{DSS} \left(1 - \frac{V_P}{V_P} \right)^2 \\ &= I_{DSS}(1 - 1)^2 = I_{DSS}(0) \end{aligned}$$

$$I_D = 0 \text{ A} \mid_{V_{GS}=V_P} \quad (6.7)$$

For the drain characteristics of Fig. 6.17, if we substitute $V_{GS} = -1 \text{ V}$,

$$\begin{aligned} I_D &= I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \\ &= 8 \text{ mA} \left(1 - \frac{-1 \text{ V}}{-4 \text{ V}} \right)^2 = 8 \text{ mA} \left(1 - \frac{1}{4} \right)^2 = 8 \text{ mA} (0.75)^2 \\ &= 8 \text{ mA} (0.5625) \\ &= \mathbf{4.5 \text{ mA}} \end{aligned}$$

Shorthand Method

Since the transfer curve must be plotted so frequently, it would be quite advantageous to have a shorthand method for plotting the curve in the quickest, most efficient manner while maintaining an acceptable degree of accuracy. The format of Eq. (6.3) is such that specific levels of V_{GS} will result in levels of I_D that can be memorized to provide the plot points needed to sketch the transfer curve. If we specify V_{GS} to be one-half the pinch-off value V_P , the resulting level of I_D will be the following, as determined by Shockley's equation:

$$\begin{aligned} I_D &= I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \\ &= I_{DSS} \left(\frac{1 - V_P/2}{V_P} \right)^2 = I_{DSS} \left(1 - \frac{1}{2} \right)^2 = I_{DSS}(0.5)^2 \\ &= I_{DSS}(0.25) \end{aligned}$$

and

$$I_D = \frac{I_{DSS}}{4} \mid_{V_{GS}=V_P/2} \quad (6.9)$$

Now it is important to realize that Eq. (6.9) is not for a particular level of V_P . It is a general equation for any level of V_P as long as $V_{GS} = V_P/2$. The result specifies that the drain current will always be one-fourth the saturation level I_{DSS} as long as the gate-to-source voltage is one-half the pinch-off value. Note the level of I_D for $V_{GS} = V_P/2 = -4 \text{ V}/2 = -2 \text{ V}$ in Fig. 6.17.

If we choose $I_D = I_{DSS}/2$ and substitute into Eq. (6.8), we find that

$$\begin{aligned} V_{GS} &= V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right) \\ &= V_P \left(1 - \sqrt{\frac{I_{DSS}/2}{I_{DSS}}} \right) = V_P(1 - \sqrt{0.5}) = V_P(0.293) \end{aligned}$$

and

$$V_{GS} \cong 0.3V_P \Big|_{I_D=I_{DSS}/2} \quad (6.10)$$

Additional points can be determined, but the transfer curve can be sketched to a satisfactory level of accuracy simply using the four plot points defined above and reviewed in Table 6.1. In fact, in the analysis of Chapter 7, a maximum of four plot points are used to sketch the transfer curves. On most occasions using just the plot point defined by $V_{GS} = V_P/2$ and the axis intersections at I_{DSS} and V_P will provide a curve accurate enough for most calculations.

TABLE 6.1
 V_{GS} versus I_D Using Shockley's
Equation

V_{GS}	I_D
0	I_{DSS}
$0.3V_P$	$I_{DSS}/2$
$0.5V_P$	$I_{DSS}/4$
V_P	0 mA

EXAMPLE 6.1 Sketch the transfer curve defined by $I_{DSS} = 12 \text{ mA}$ and $V_P = -6 \text{ V}$.

Solution: Two plot points are defined by

$$I_{DSS} = 12 \text{ mA} \quad \text{and} \quad V_{GS} = 0 \text{ V}$$

and

$$I_D = 0 \text{ mA} \quad \text{and} \quad V_{GS} = V_P$$

At $V_{GS} = V_P/2 = -6 \text{ V}/2 = -3 \text{ V}$ the drain current is determined by $I_D = I_{DSS}/4 = 12 \text{ mA}/4 = 3 \text{ mA}$. At $I_D = I_{DSS}/2 = 12 \text{ mA}/2 = 6 \text{ mA}$ the gate-to-source voltage is determined by $V_{GS} \cong 0.3V_P = 0.3(-6 \text{ V}) = -1.8 \text{ V}$. All four plot points are well defined on Fig. 6.18 with the complete transfer curve.

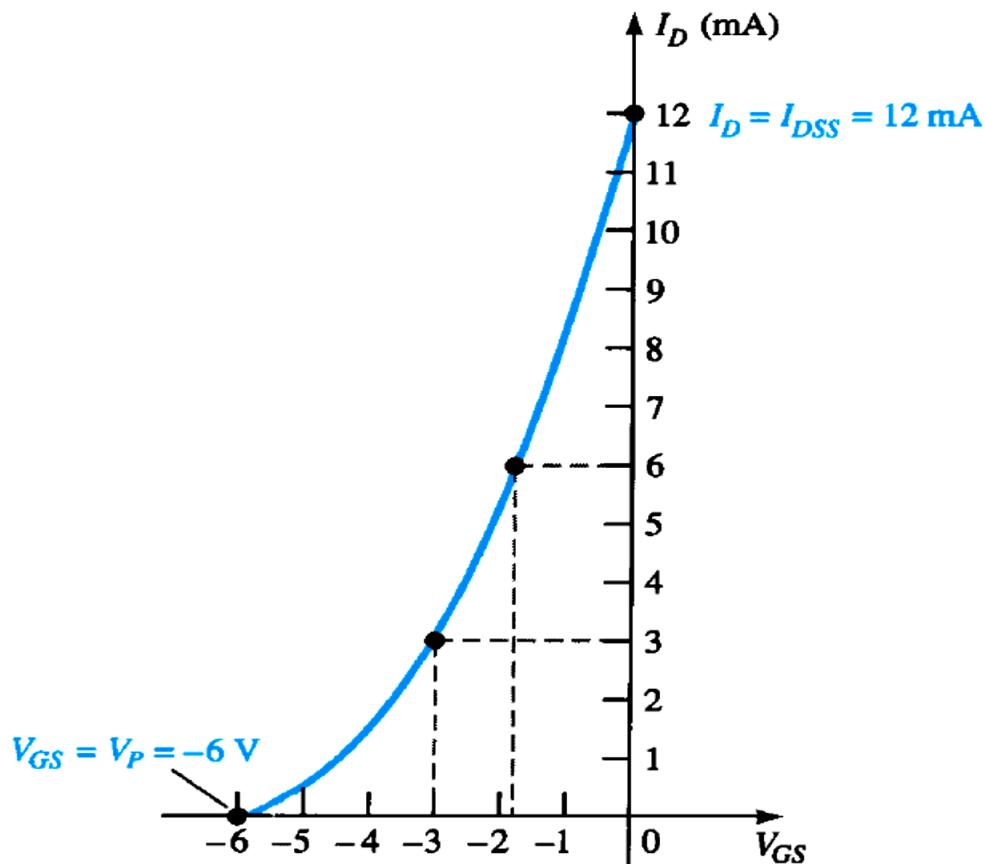


FIG. 6.18
Transfer curve for Example 6.1.

EXAMPLE 6.2 Sketch the transfer curve for a *p*-channel device with $I_{DSS} = 4$ mA and $V_P = 3$ V.

Solution: At $V_{GS} = V_P/2 = 3$ V/2 = 1.5 V, $I_D = I_{DSS}/4 = 4$ mA/4 = 1 mA. At $I_D = I_{DSS}/2 = 4$ mA/2 = 2 mA, $V_{GS} = 0.3V_P = 0.3(3)$ V = 0.9 V. Both plot points appear in Fig. 6.19 along with the points defined by I_{DSS} and V_P .

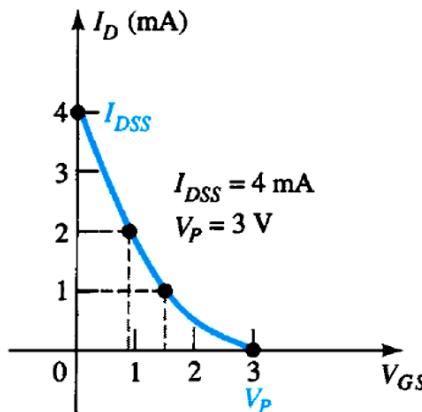


FIG. 6.19
Transfer curve for the *p*-channel device of Example 6.2.

IMPORTANT RELATIONSHIPS

TABLE 6.2

JFET	BJT	
$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$	\Leftrightarrow	$I_C = \beta I_B$
$I_D = I_S$	\Leftrightarrow	$I_C \approx I_E$
$I_G \approx 0 \text{ A}$	\Leftrightarrow	$V_{BE} \approx 0.7 \text{ V}$

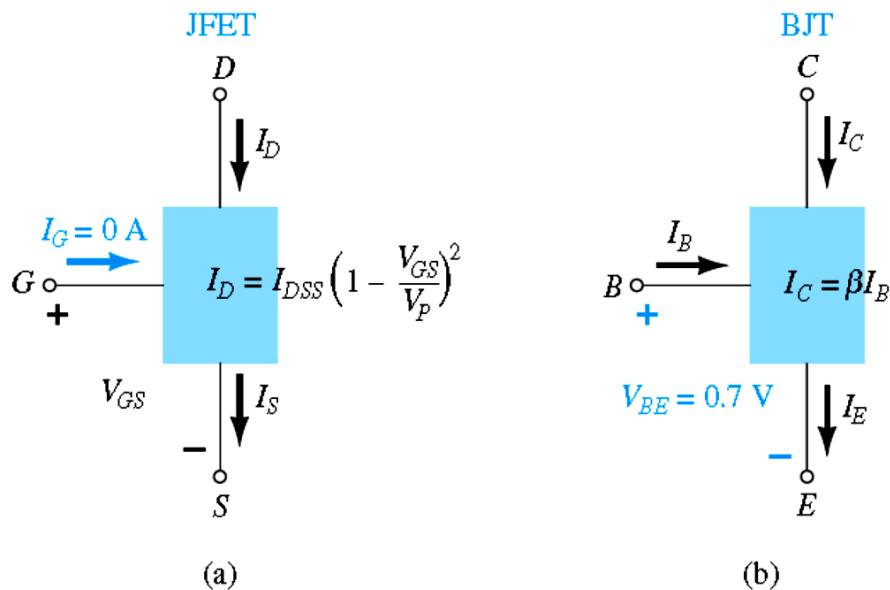


FIG. 6.23

(a) JFET versus (b) BJT.

DEPLETION-TYPE MOSFET

Basic Operation and Characteristics

In Fig. 6.25 the gate-to-source voltage is set to 0 V by the direct connection from one terminal to the other, and a voltage V_{DD} is applied across the drain-to-source terminals. The result is an attraction of the free electrons of the *n*-channel for the positive voltage at the drain. The result is a current similar to that flowing in the channel of the JFET. In fact, the resulting current with $V_{GS} = 0$ V continues to be labeled I_{DSS} , as shown in Fig. 6.26.

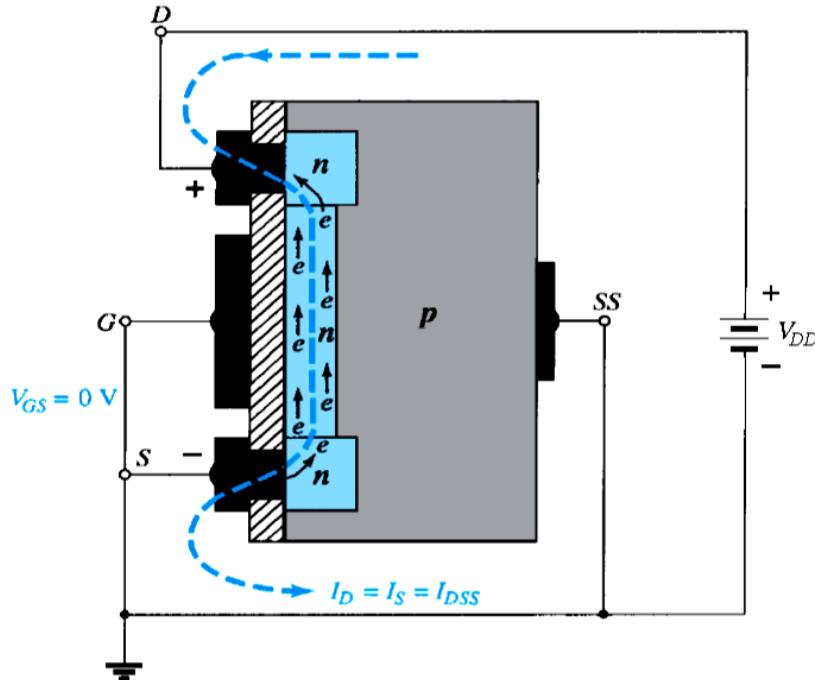


FIG. 6.25
n-Channel depletion-type MOSFET with $V_{GS} = 0$ V and applied voltage V_{DD} .

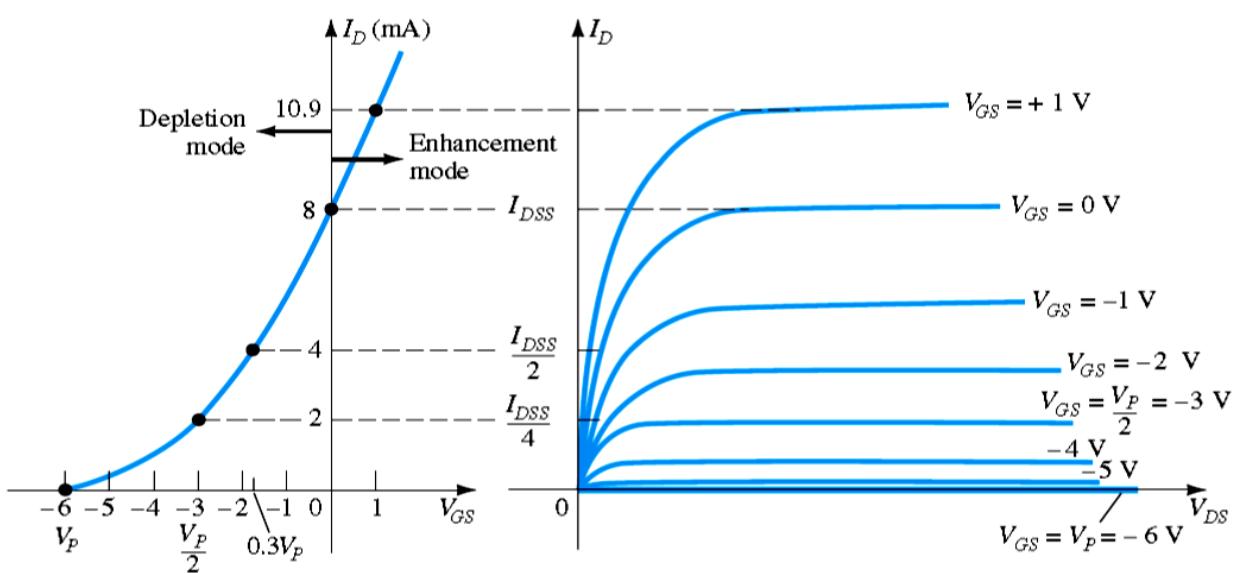


FIG. 6.26
Drain and transfer characteristics for an *n*-channel depletion-type MOSFET.

EXAMPLE 6.3 Sketch the transfer characteristics for an *n*-channel depletion-type MOSFET with $I_{DSS} = 10$ mA and $V_P = -4$ V.

Solution:

At $V_{GS} = 0$ V, $I_D = I_{DSS} = 10$ mA

$V_{GS} = V_P = -4$ V, $I_D = 0$ mA

$$V_{GS} = \frac{V_P}{2} = \frac{-4 \text{ V}}{2} = -2 \text{ V}, \quad I_D = \frac{I_{DSS}}{4} = \frac{10 \text{ mA}}{4} = 2.5 \text{ mA}$$

and at $I_D = \frac{I_{DSS}}{2}$,

$$V_{GS} = 0.3V_P = 0.3(-4 \text{ V}) = -1.2 \text{ V}$$

all of which appear in Fig. 6.28.

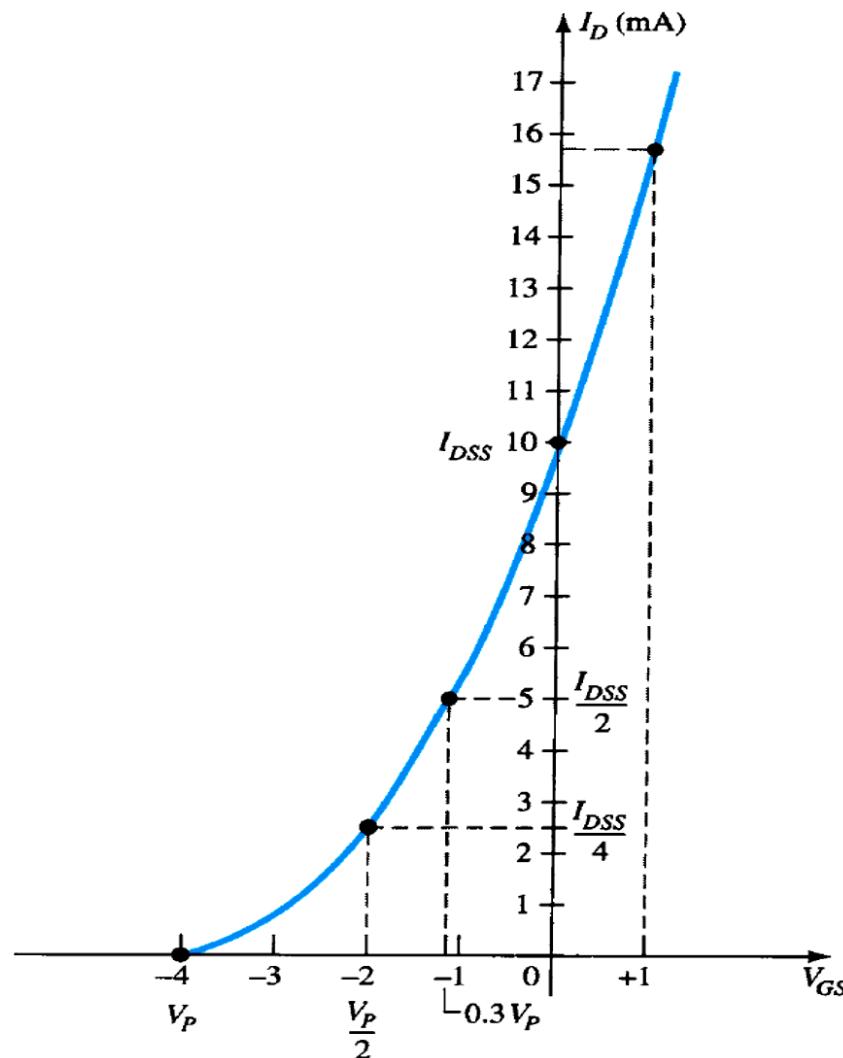


FIG. 6.28
Transfer characteristics for an *n*-channel depletion-type MOSFET with $I_{DSS} = 10$ mA and $V_P = -4$ V.

Before plotting the positive region of V_{GS} , keep in mind that I_D increases very rapidly with increasing positive values of V_{GS} . In other words, be conservative with the choice of values to be substituted into Shockley's equation. In this case, we try +1 V as follows:

$$\begin{aligned}
 I_D &= I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \\
 &= (10 \text{ mA}) \left(1 - \frac{+1 \text{ V}}{-4 \text{ V}} \right)^2 = (10 \text{ mA}) (1 + 0.25)^2 = (10 \text{ mA}) (1.5625) \\
 &\approx 15.63 \text{ mA}
 \end{aligned}$$

which is sufficiently high to finish the plot.

p-Channel Depletion-Type MOSFET

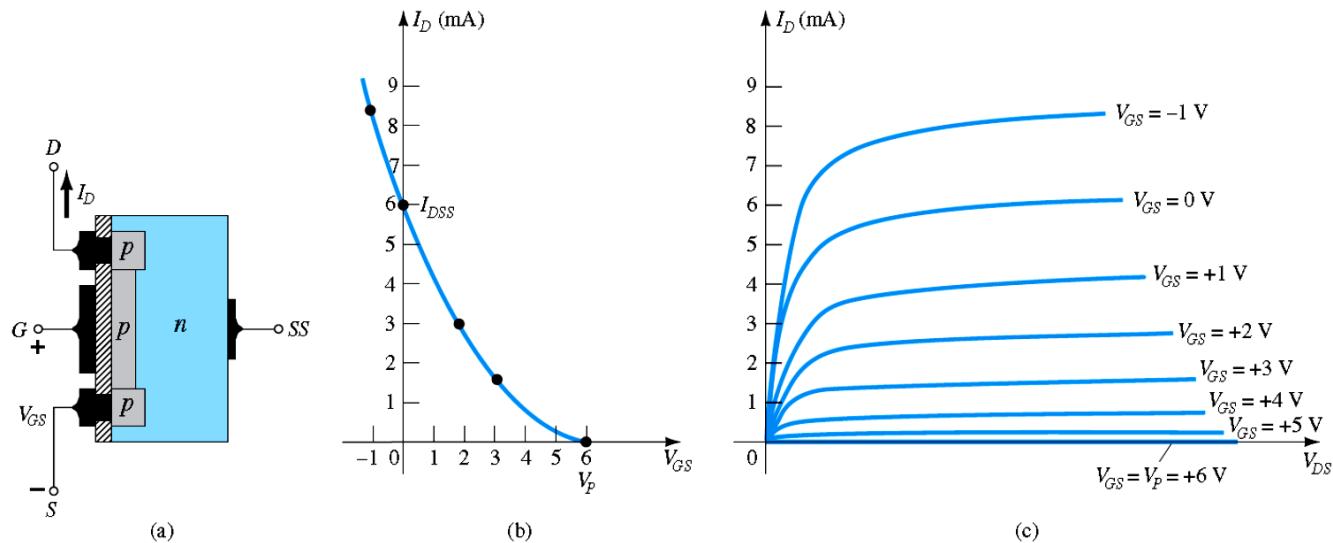
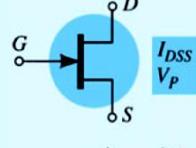
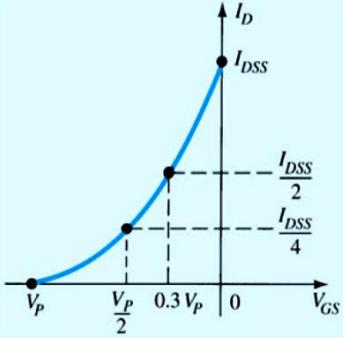
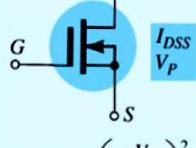
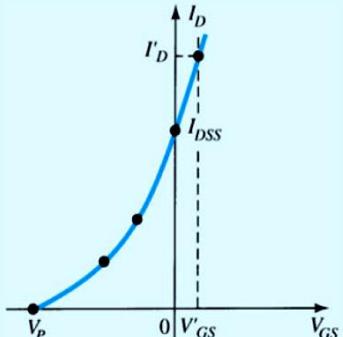
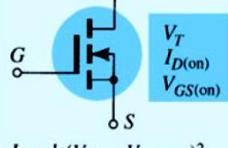
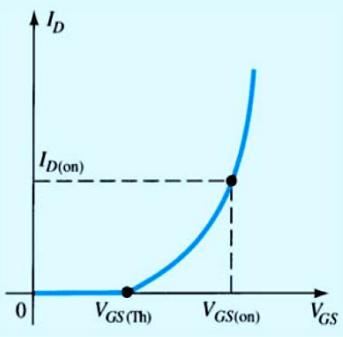


FIG. 6.29
p-Channel depletion-type MOSFET with $I_{DSS} = 6 \text{ mA}$ and $V_P = +6 \text{ V}$.

SUMMARY TABLE

TABLE 6.3
Field Effect Transistors

Type	Symbol and Basic Relationships	Transfer Curve	Input Resistance and Capacitance
JFET (n-channel)	$I_G = 0 \text{ A}, I_D = I_S$  $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$		$R_i > 100 \text{ M}\Omega$ $C_i: (1 - 10) \text{ pF}$
MOSFET depletion type (n-channel)	$I_G = 0 \text{ A}, I_D = I_S$  $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$		$R_i > 10^{10} \Omega$ $C_i: (1 - 10) \text{ pF}$
MOSFET enhancement type (n-channel)	$I_G = 0 \text{ A}, I_D = I_S$  $I_D = k (V_{GS} - V_{GS(\text{Th})})^2$ $k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS(\text{Th})})^2}$		$R_i > 10^{10} \Omega$ $C_i: (1 - 10) \text{ pF}$