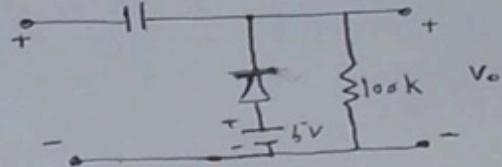
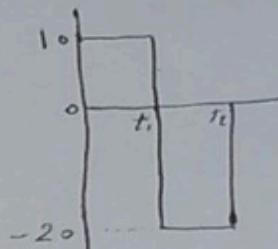
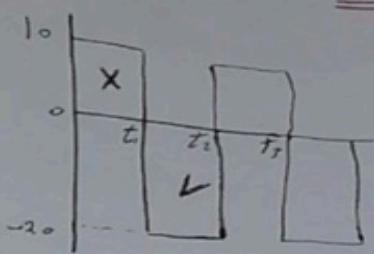


ملحق مادة الفصل الثاني / Clampers 1

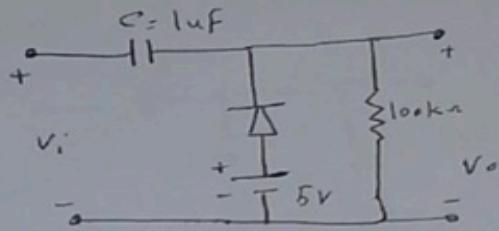


وهي دائرة متكونة من ملاط عناصر رئيسية :

Capacitor ③ diode ② , Resistance ①

خطوات حل السؤال : Clamp

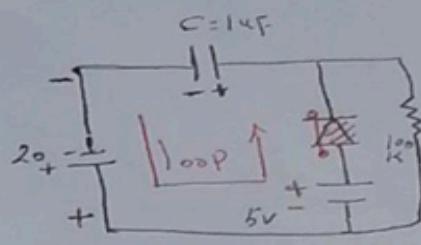

- ١) نأخذ جزء دائرة الإدخال الذي يجعل الديود سالبيز امامي لـ حاجة
- ٢) نقوم بحساب قيمة متغيرة متغيرة من حيث التيار
- ٣) ن Deduce الجزءباقي من الدائرة

Ex 31: Determine V_o for the network..



٤) فتح المرببة اي مبرد او دائرة مت يتصل بـ الـ diode

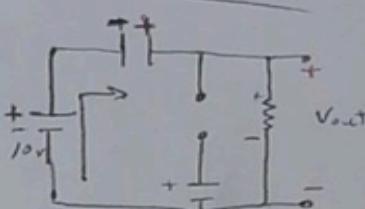
Ex 31: Determine v_o for the network of figure below ---




2

Sol |

* نأخذ الموجة الثانية (2-0) لأن الجزء الثاني من موجة
الإدخال يغير الاعداد اثنين اثنين - مفهوم تسلق الدائرة



for $V_{in} t_1 \rightarrow t_2$ $\int +20 + 5 - V_C$
 $V_{out} = 5$ $V_C = 20 + 5$
 $\underline{V_C = 25 \text{ Volt}}$

for $V_i t_2 \rightarrow t_3$

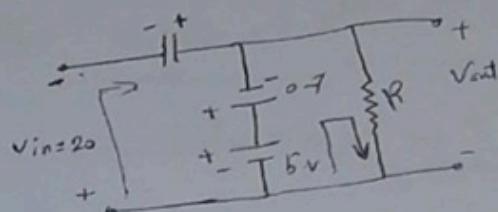
$$+10 + 25 - V_o = 0$$

$$V_o = 35$$

32/ Repeat Example 31 using a Silicon diode with $V_D = 0.7 \text{ V}$

Sol

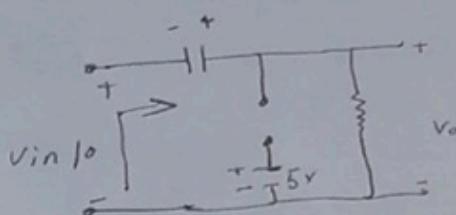
* نفس المبرقية السابقة تأثر بالسيونت أيجزر الذي يغير الاتارة اما فهو

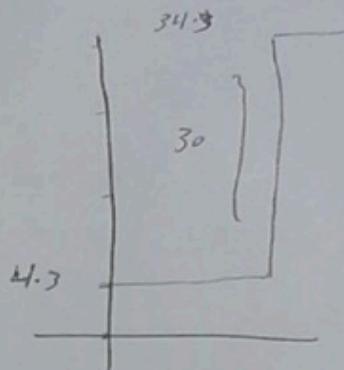

$$+5 - 0.7 - V_o = 0$$

$$V_o = 4.3 \text{ Volt}$$

for the input $\underline{20}$

$$-20 + V_C + 0.7 - 5 = 0$$

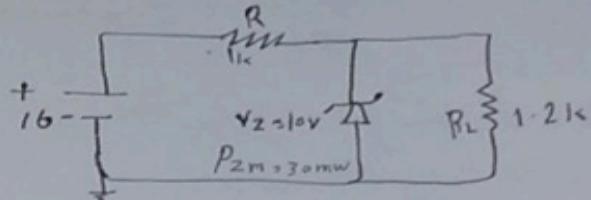

$$V_C = 24.3 \text{ Volt}$$


$$+10 + V_C - V_o = 0$$

$$+10 + 24.3 - V_o = 0$$

$$V_o = 34.3 \text{ Volt}$$

* في دروس الـ Diode Clamper في مادا يكون ايجاه الى \rightarrow ونافذ الاتارة انتا ين في كل الاتارة

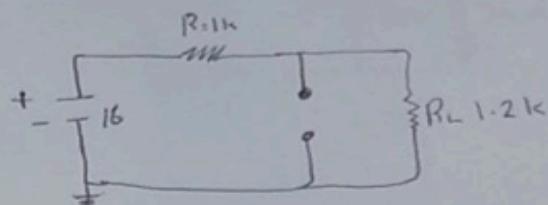


4

Zener diode

الثوريّة من أنواع الأيدوان، لكنّ آليّة عملها (انه سيعمل على التوصيل) مُتحفّظة.

Ex 33: For the circuit of figure below determine V_L , V_R , I_Z , P_Z



Sol first we must find the voltage across the load:

$$V = V_L = V_i \times \frac{R_L}{R_L + R}$$

قانون المعاوقة

$$= 16 \times \frac{1.2}{1+1.2}$$

✓ - 8. 7272 ✓

الله لبيت الحسين الى طلاقناها ص اول من من لبيت اد اسود
الله لبيت الحسين الى طلاقناها ص اول من من لبيت اد اسود

$$\therefore V_Z = 10 \text{ V}$$

$\therefore V < V_Z \Rightarrow$ The Zener diode is in off state

$$V_R = V_i - V_f$$

$$16 - 8.7272 = 7.2728 \text{ V}_\text{eff}$$

احداثی عرضی V_L و مختصی عرضی V_R می باشد.

$$P_z = V_z * I_z = 0 \text{ W} \quad \text{اين اسما را}$$

Ex34: Repeat Example 33 with $R_L = 3\text{k}\Omega$

Sol 1

* نرجح نستخرج المعلومة الكلية للدائرة

$$V = V_i \times \frac{R_L}{R + R_L} \Rightarrow 16 \times \frac{3\text{k}\Omega}{1\text{k} + 3\text{k}} = 12\text{V}$$

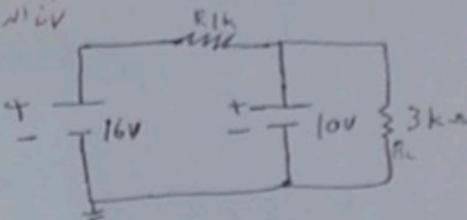
Voltage divider

$\therefore V > V_2$ * المعلومة الكلية المسترجدة أكبر
مقدار سعة الداير داير

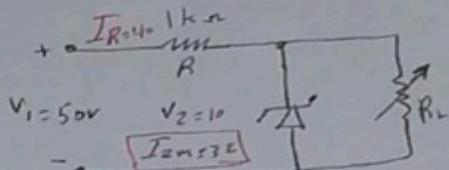
$$\therefore V_L = V_2 = 10 \rightarrow \text{ناتجها 10V}$$

$$V_R = V_i - V_L$$

$$V_R = 16 - 10 = 6\text{V}$$


$$I_L = \frac{V_L}{R_L} = \frac{10}{3\text{k}} = 3.333\text{mA}$$

$$I_R = \frac{V_R}{R} = \frac{6}{1} = 6\text{mA}$$


$$I_Z = I_R - I_L = 6 - 3.333 = 2.6667\text{mA}$$

$$P_2 = V_Z \times I_Z = 10 \times 2.6667 = 26.667\text{mW}$$

$$P_{ZM} = 30\text{mW}$$

Ex 34: For the network of figure below determine the range of R_L , I_L that will result in V_{RL} being maintained at 10 Volt

Sol

To determine the value of R_L that will the zener diode on

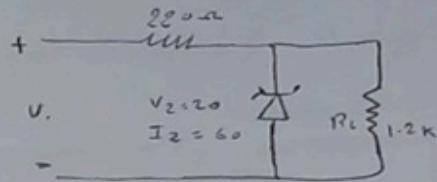
$$V_R = V_Z = 10 \text{ V}$$

by using VDR

$$V_{RL} = V_{in} * \frac{R_L}{R_L + R} \Rightarrow 10 = \frac{50}{50 + R_L} * \frac{R_L}{R+1}$$

$$\Rightarrow \frac{10}{50} = \frac{R_L}{R_L + 1} \Rightarrow 1 = \frac{5R_L}{R_L + 1} \Rightarrow R_L + 1 = 5R_L$$

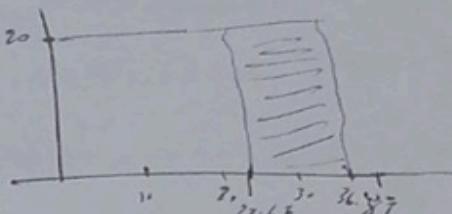
$$\Rightarrow 1 = 5R_L - R_L \Rightarrow 1 = 4R_L \Rightarrow R_L = \frac{1}{4} = 0.25 \text{ k}\Omega$$


~~$$I_R = \frac{V_R}{R_L} = \frac{10}{0.25} = 40 \text{ mA}$$~~

* في هذا المربع من الأسئلة عند ما تأثير الموارد
متغيره فنقوم بترجمة فرضية كلها
ومنها نتوصل بقيمة معرفة المذكورة

$$I_R = \frac{V_R}{R} = \frac{10}{1} = 10 \text{ mA}$$

$$I_L = I_R - I_Z = 10 - 32 = -22 \text{ mA}$$


Ex 35: Determine the range of V_i that will maintain the zener diode of figure below in the on state.

Sol 1 $V_{RL} = V_Z = 20$ حالة قيادة على

~~$$V_Z = V_i \times \frac{R_L}{R_L + R} \Rightarrow V_i = \frac{V_Z}{\frac{R_L}{R_L + R}} \Rightarrow \frac{(20)(1.2 + 0.22)}{1.2 \times 10^3}$$~~

$$V_i \Rightarrow 23.07 \text{ V} \Rightarrow V_{i \text{ min}}$$

$$I_L = \frac{V_L}{R} = \frac{20}{1.2} = 16.67 \text{ mA}$$

$$I_{R \text{ max}} = 60 \text{ mA} + 16.67 \text{ mA} = 76.67 \text{ mA}$$

$$V_{i \text{ max}} = I_{R \text{ max}} \times R + V_D \\ = 76.67 \times 0.22 + 20 = 36.87 \text{ V}$$

CFB

III

8

$$V_{BE} + V_{BC} + V_{CE} = 0$$

$$I_E = I_C + I_B$$

$$I_C = I_{C\text{majority}} + I_{C\text{minority}}$$

Ex: If, the voltage between E and C is 0.7V, then what is the voltage between B and E?

Common-Base configuration

$$I_C = \alpha I_E$$

Revers

$$\alpha = \frac{I_C}{I_E}$$

forward

$$\beta = \frac{I_C}{I_B}$$

$$\beta_{ac} = \frac{I_{C2} - I_{C1}}{I_{B2} - I_{B1}}$$

$$\alpha = \frac{\beta}{1 + \beta}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$I_C = \beta I_B$$

$$I_E = (\beta + 1) I_B$$

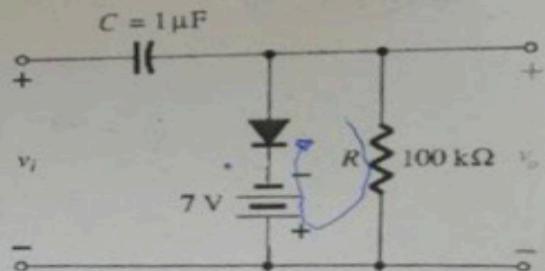
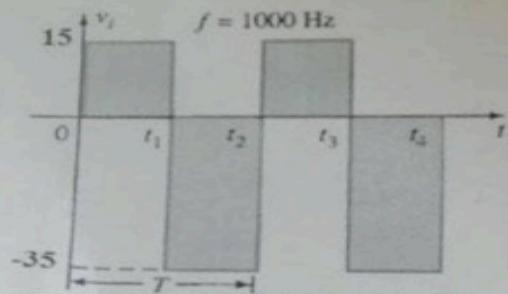
Ex: Measurement of an n-p-n BJT in a particular circuit shows

the base current to be $14.46 \mu A$ the emitter current to be 1.46 mA

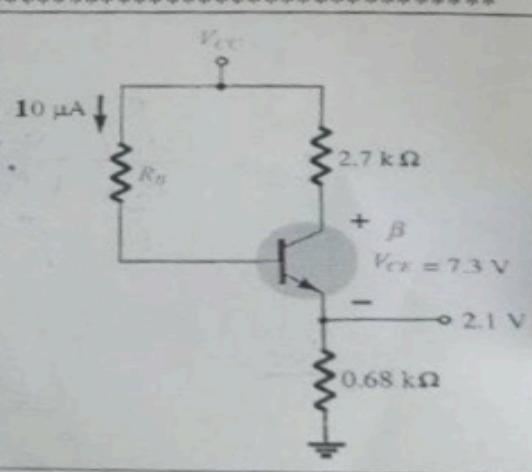
and the base-emitter voltage to be 0.7 V for these conditions

calculate α & β

$$\text{Sol: } I_E = I_C + I_B \Rightarrow I_C = I_E - I_B = 1.460 - 0.01446$$

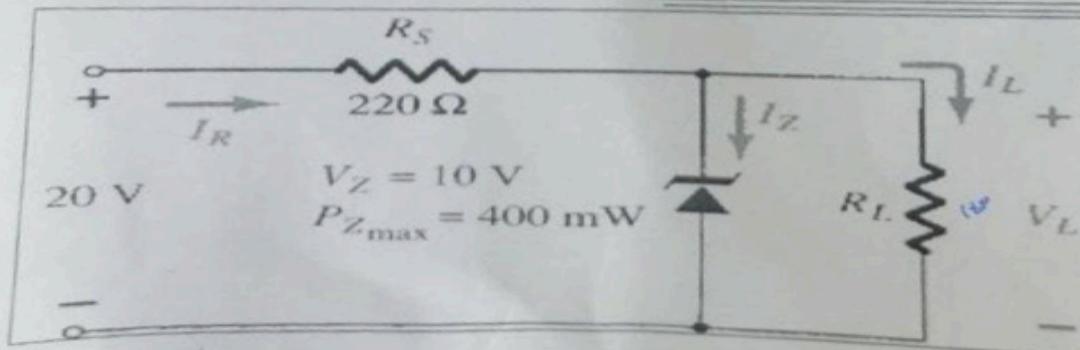


$$I_C = 1.4455 \text{ mA} \quad \text{in this condition}$$

1000 times

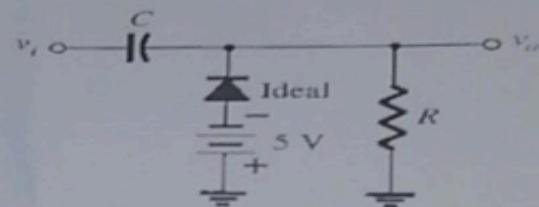
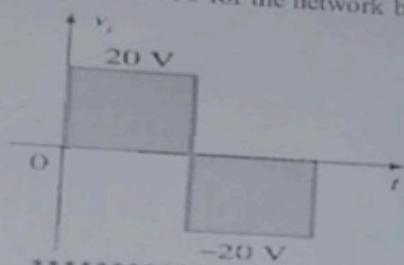

$$\beta = \frac{I_C}{I_B} = \frac{1.4455}{0.01446} = 99$$

$$\alpha = \frac{I_C}{I_E} = \frac{1.4455}{1.460} = 0.99$$

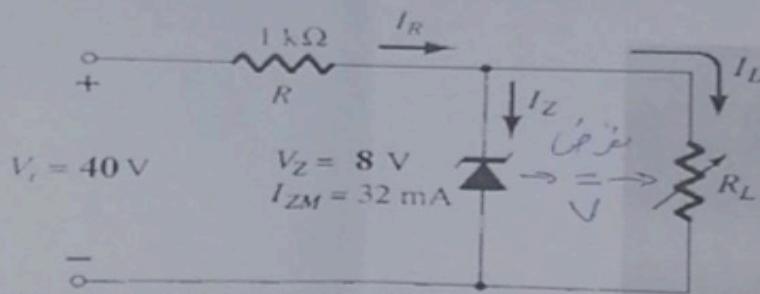
Q1// Sketch v_o for the network below and determine total discharge time (diode are ideal).
راغه جبار



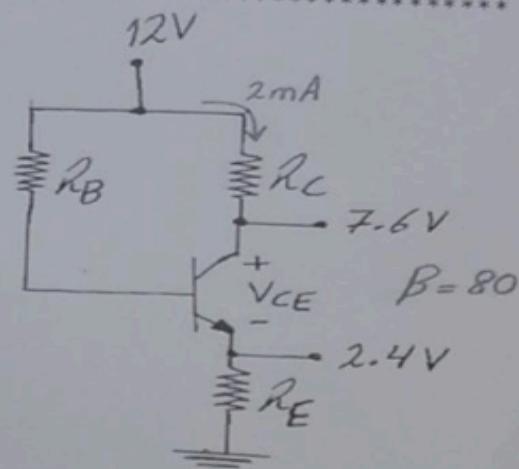
Q2// Determine β , V_{CE} , R_B

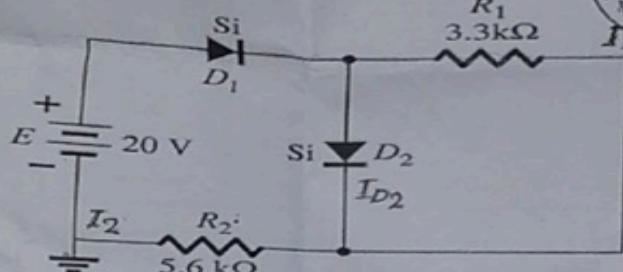
Q3// 1-Determine the range of RL (RL_{min} , RL_{max})


2- Determine VL , IL , I_Z if $RL = 180 \Omega$.

أسئلة الصباغي ش2

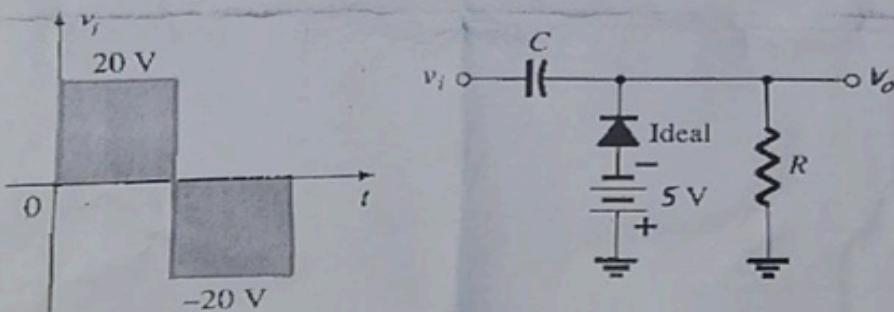


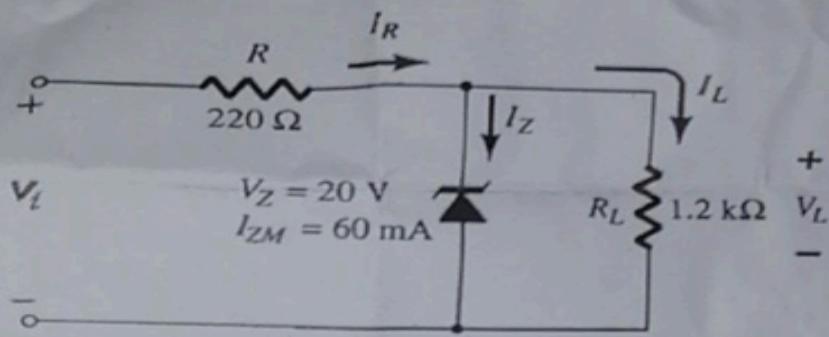
Q2// determine the range of RL , IL that will result in V_{RL} being maintained at 8 V.


Q3// Determine Given the information provided in figure below, determine:

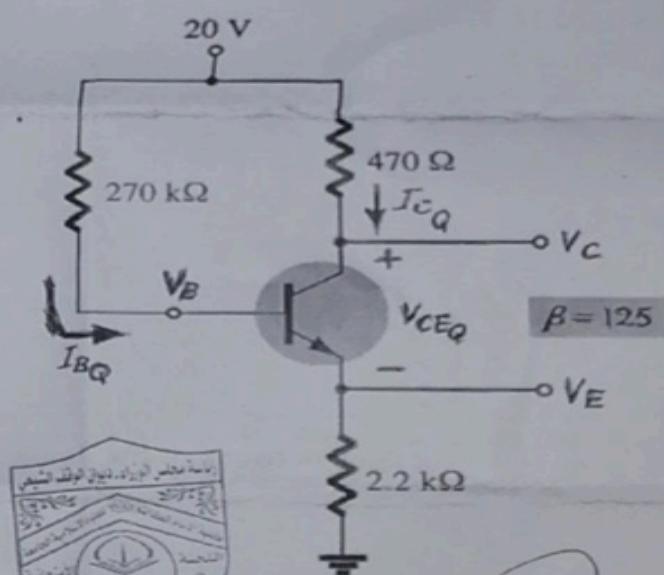
- ~ a- RC
- ~ b- RE
- ~ c- RB
- ~ d- V_{CE}
- ~ e- VB

ملاحظة: الإجابة عن أربع أسئلة فقط. (كل سؤال 10 درجات)


Q1// Determine the currents I_1 , I_2 , and I_{D2} for the network shown below


Q2// a. Given $P_{max}=14 \text{ mW}$ for each diode at Figure below, determine the maximum current rating of each diode (using the approximate equivalent model).
 b. Determine I_{max} for the parallel diodes.
 c. Determine the current through each diode at V_{imax} using the results of part (b).
 d. If only one diode were present, which would be the expected result?

Q3// Sketch v_o for each network of the figure below.



Q4// Determine the range of V_i that will maintain the Zener diode of figure below in the on state.

Q5// For the emitter-bias circuit of Figure below, determine:

- (a) IBQ
- (b) ICQ
- (c) $VCEQ$
- (d) VC , VB , & VE

دعايى لكم بالنجاح والتوفيق

م. م. مصطفى يحيى حسن
أستاذ المادة

م. عطيل محمد صاحب
مقرر قسم هندسة تقبيليات الحاسوب

أسئلة الفاينل 2022