

PART 1
FET Transistor

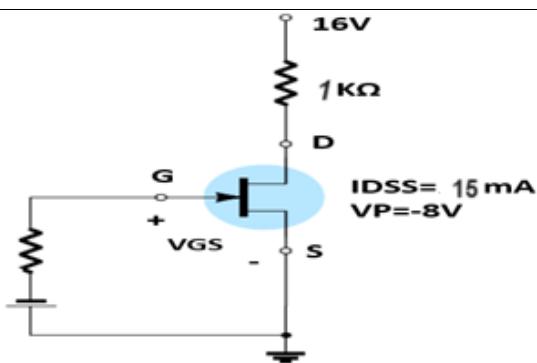
Q1. For the fixed-bias JFET shown below if $V_{DS} = 7.5V$, what is the value of I_D ?

5.5 mA

A

2 mA

B


5 mA

C

2.5 mA

D

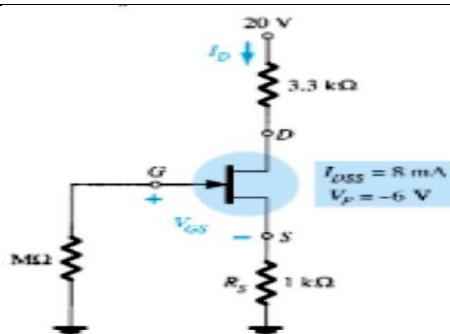
Q2. For the given circuit in figure below, if $I_D = 8\text{mA}$ what is the value of V_{DS} ?

10 V

A

6 V

B


8 V

C

4 V

D

Q3. For self-bias configuration circuit, if $I_D = 3\text{mA}$, then V_{DS} is.....

17 V

A

7.1 V

B

1.7 V

C

1.6 V

D

Q4. For the circuit shown below, $I_D = \dots$

	5.5 mA	A
	2 mA	B
	2.5 mA	C
	3.5 mA	D

Q5. For the circuit shown below, if $V_{GS} = -3V$, then $I_D = \dots$

	8 mA	A
	2 mA	B
	4 mA	C
	Zero	D

Q6. For the circuit shown in figure below, if $I_D = 2.5 \text{ mA}$, then V_{DS} is.....

	3 V	A
	5 V	B
	4 V	C
	0 V	D

Q7. For the given circuit in figure below, if $V_{DS}=6\text{V}$ what is the value of I_D ?

	10 mA	A
--	-------	---

	5 mA	B
	4 mA	C
	16 mA	D

Q8. For the circuit given below, if $I_D = 10 \text{ mA}$ what is the value of V_{DS} ?

	9 V	A
	8 V	B
	6 V	C
	1 V	D

Q9. For the circuit given below, if $I_D = 10 \text{ mA}$ what is the value of V_{GS} ?

	Zero	A
	-4 V	B
	4 V	C
	-2 V	D

Q10. For the fixed biased configuration JFET circuit, V_s is

	Zero	A
	0.7 V	B

	-0.7 V	C
	1.4 V	D

Q11. For self-bias configuration circuit, if $I_D=2.6$ mA, then V_s is.....

	2.6 V	A
	3 V	B
	1.8 V	C
	1.6 V	D

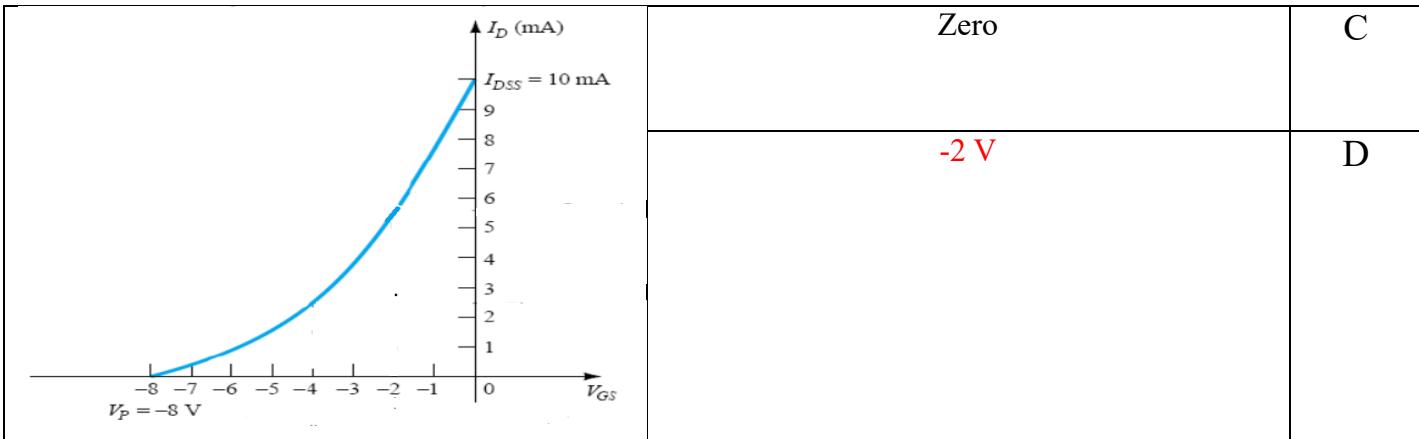
Q12. For the fixed-bias JFET shown below, what is the value of the drain current I_D ?

	6.250 mA	A
	2.650 mA	B
	5.625 mA	C
	0.650 mA	D

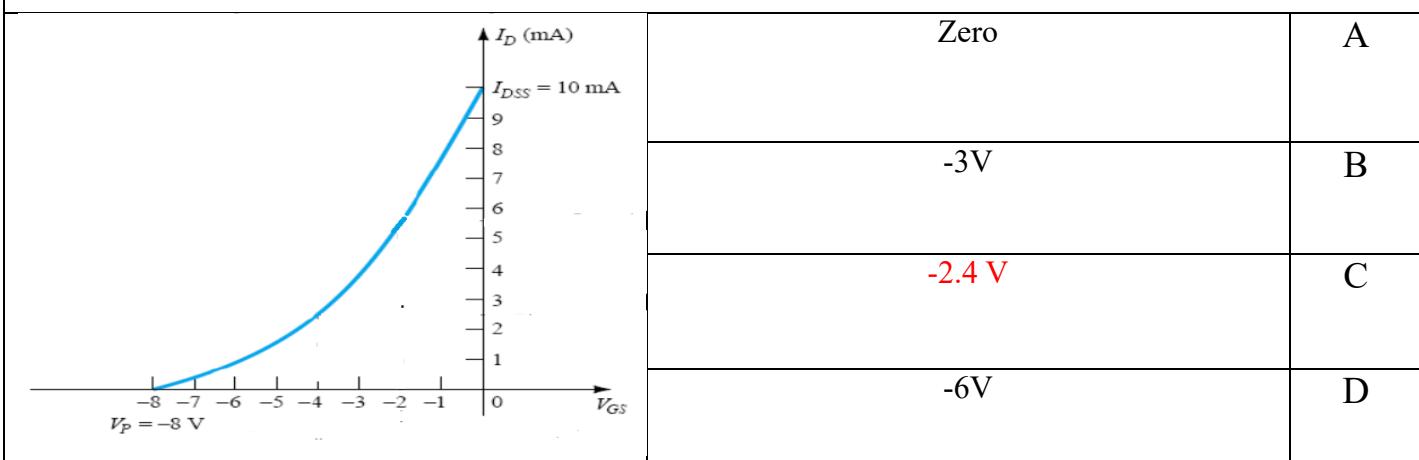
Q13. For the fixed-bias JFET shown below if $I_D=10$ mA, what is the value of the V_{DS} ?

	7.5 V	A
	4 V	B
	5.75 V	C
	0 V	D

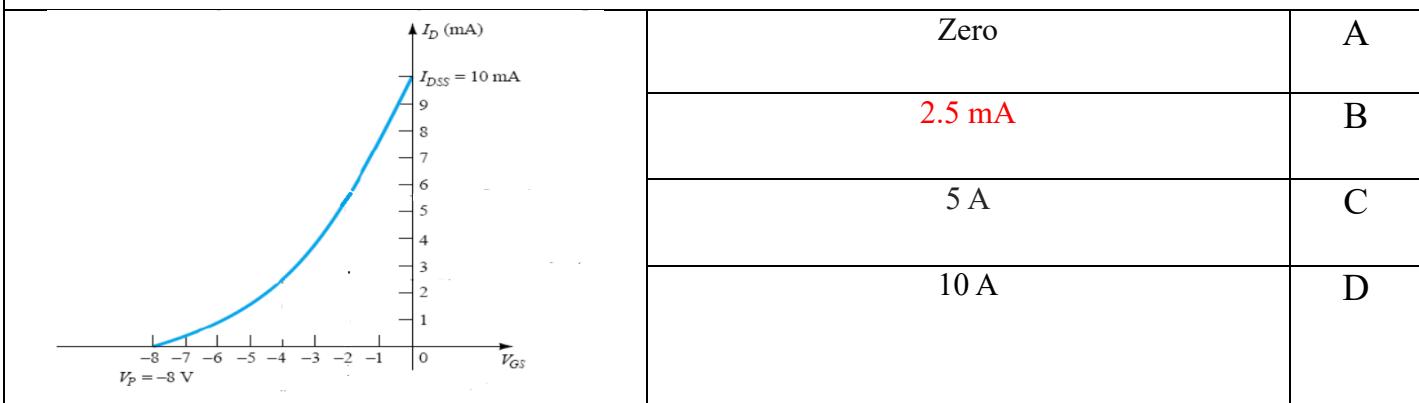
Q14. In a Self-bias JFET circuit shown below, V_{DS} is determined from the equation


	$V_{DS} = V_{DD} - I_D \cdot R_S$	A
	$V_{DS} = V_{DD} + I_D (R_S + R_G)$	B
	$V_{DS} = V_{DD} - I_D (R_S + R_D)$	C
	$V_{DS} = V_{DD} - I_D \cdot R_D$	D

Q15. For the n-channel JFET shown, if $R_S = 500\Omega$ and $I_D = 6 \text{ mA}$ what is the value of V_{GS} ?


	-6 V	A
	3 V	B
	-3 V	C
	Zero	D

Q16. For JFET's characteristics shown, if $I_D = 5.6 \text{ mA}$, what is the value of V_{GS} ?


	-1 V	A
	-3 V	B

Q17. For the FET transfer characteristics, when $I_D = I_{DSS}/2$, then V_{GS} is

Q18. For the FET transfer characteristics, when $V_{GS} = V_p/2$, then $I_D =$

Q19. What is the value of drain current when $V_{GS} = \text{pinch-off voltage } V_p$?

Zero	A
------	---

> I_{DSS}	B
< I_{DSS}	C
= I_{DSS}	D

Q20. For an n-channel FET, What is the direction of current flow?

Source to drain	A
Drain to source	B
Gate to source	C
Gate to drain	D

Q21. What is the value of I_D when V_{GS} is less than the pinch-off voltage V_p ?

Zero	A
> I_{DSS}	B
Maximum	C
< I_{DSS}	D

Q22. Which of the following statement is true about FET?

It has high output impedance	A
It has high input impedance	B
It has low input impedance	C
It does not offer any impedance	D

Q23. When will maximum drain current flows in a FET?

$V_{GS} = 0$	A
--------------	---

$V_{GS} = V_p$	B
$V_{DS} \leq V_p$	C
$V_{DS} \geq V_p$	D

Q24. In shorthand method, if ($V_{GS} = V_p/2$) then

$I_D = 0$	A
$I_D = I_{DSS}$	B
$I_D = 0.5 I_{DSS}$	C
$I_D = 0.25 I_{DSS}$	D

Q25. If $V_{GS} = -2$ V, then $V_{GG} =$

2V	A
-4V	B
-5V	C
-2V	D

Q26. The Shockley equation is

$I_D = I_{DSS} \left[1 - \frac{V_{GS}}{V_p}\right]^2$	A
$I_D = I_{DSS} \left[1 - \frac{V_{GS}}{V_p}\right]^3$	B
$I_D = I_{DSS} \left[1 - \frac{V_{GG}}{V_p}\right]^2$	C
$I_D = I_{DSS} \left[2 - \frac{V_{GS}}{V_p}\right]^2$	D

Q27. JFET is

Bipolar field junction	A
------------------------	---

Transistor field junction	B
Effect transistor field	C
Junction field effect transistor	D

Q28. If $I_{DSS} = 10 \text{ mA}$, $V_{GS} = 0V$, then $I_D = \dots$

5m A	A
7m A	B
10m A	C
13m A	D

Q29. The maximum current in JFETs is defined as I_{DSS} and occurs when $V_{GS} = \dots$

0 V	A
∞	B
Maximum	C
0.7 V	D

Q30. For the FET transfer characteristics when $I_D=0$, then $V_{GS} = \dots$

V_p	A
Zero	B
undefined	C
minimum	D

Q31. For the FET transfer characteristics when $I_D=I_{DSS}$, then V_{GS} is \dots

-1.8 V	A
--------	---

-3V	B
0 V	C
-6V	D

Q32. I_{DSS} is

the drain current with the drain-source open-circuited	A
the drain current at cutoff	B
the maximum possible drain current	C
the zero-drain current	D

Q33. The names of the three terminals of JFET are

cathode, anode, grid	A
emitter, base, collector	B
source, gate, drain	C
none of the above	D

Q34. A JFET is a controlled device.

current	A
voltage	B
both current and voltage	C
none of the above	D

Q35. For a self-bias configuration of n-channel JFET; if $I_D = 10\text{mA}$ and $V_{GS} = -5\text{V}$, what is the value of source resistance R_S ?

250Ω	A
--------------	---

500 Ω	B
750 Ω	C
1500 Ω	D

Q36. In a FET, the control variable is:

V_{GS}	A
V_{DS}	B
V_{GG}	C
I_D	D

Q37. The gate of a JFET is biased.

Reverse	A
Forward	B
Reverse and forward	C
Open circuited	D

Q38. For all FETs

$I_D = I_S$	A
$I_D = 0$ mA	B
$I_D = I_G$	C
$I_S = I_G$	D

Q39. In JFET, using Shockley equation, when $V_{GS} = 0$, then

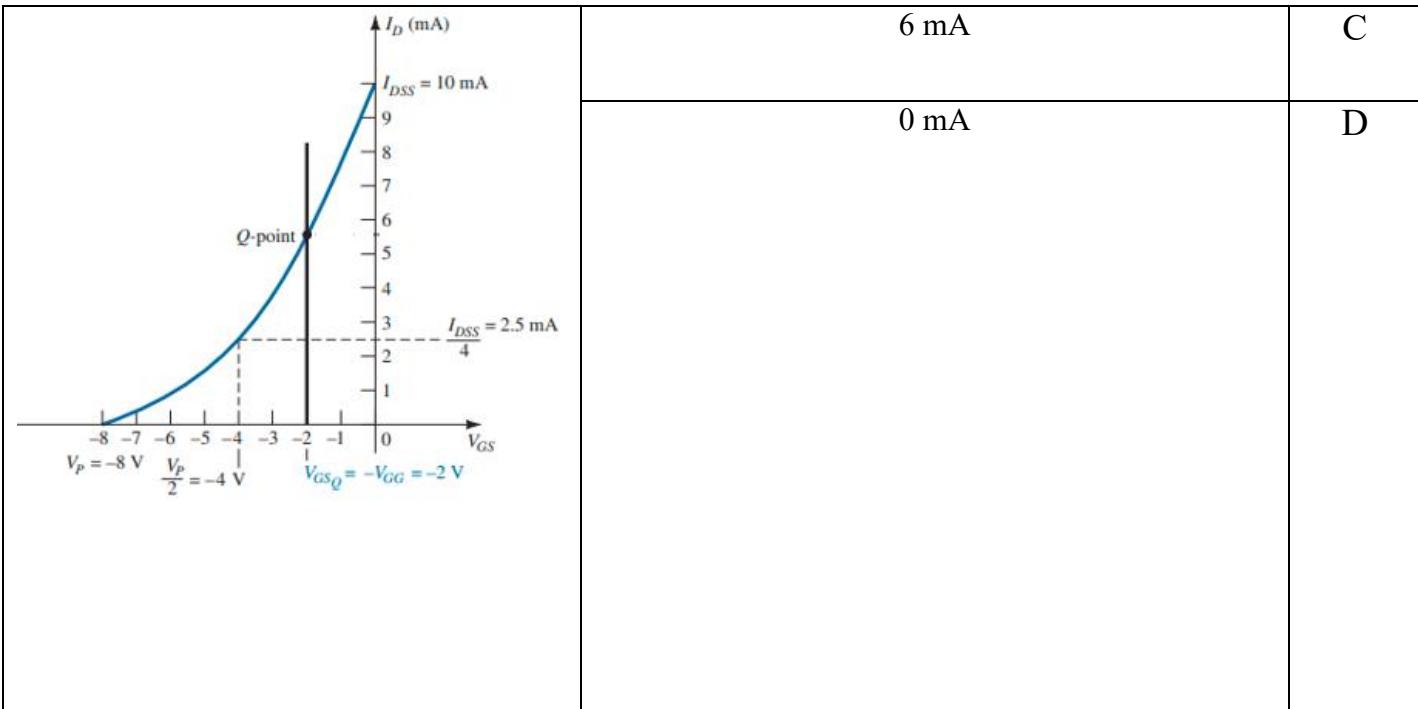
$I_D = 0$	A
-----------	---

$I_D = I_{DSS}$	B
$I_{DSS} = 0$	C
$V_p = 0$	D

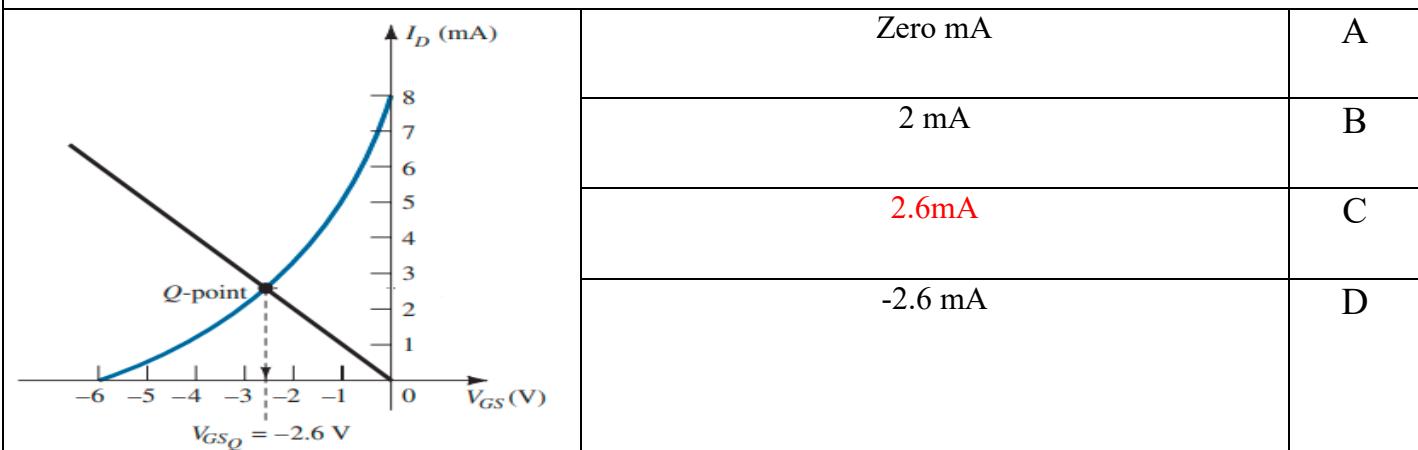
Q40. The gate voltage in a JFET at which drain current becomes zero is called voltage

Saturation	A
Pinch-off	B
Active	C
Cut-off	D

Q41. The channel of a JFET is between the

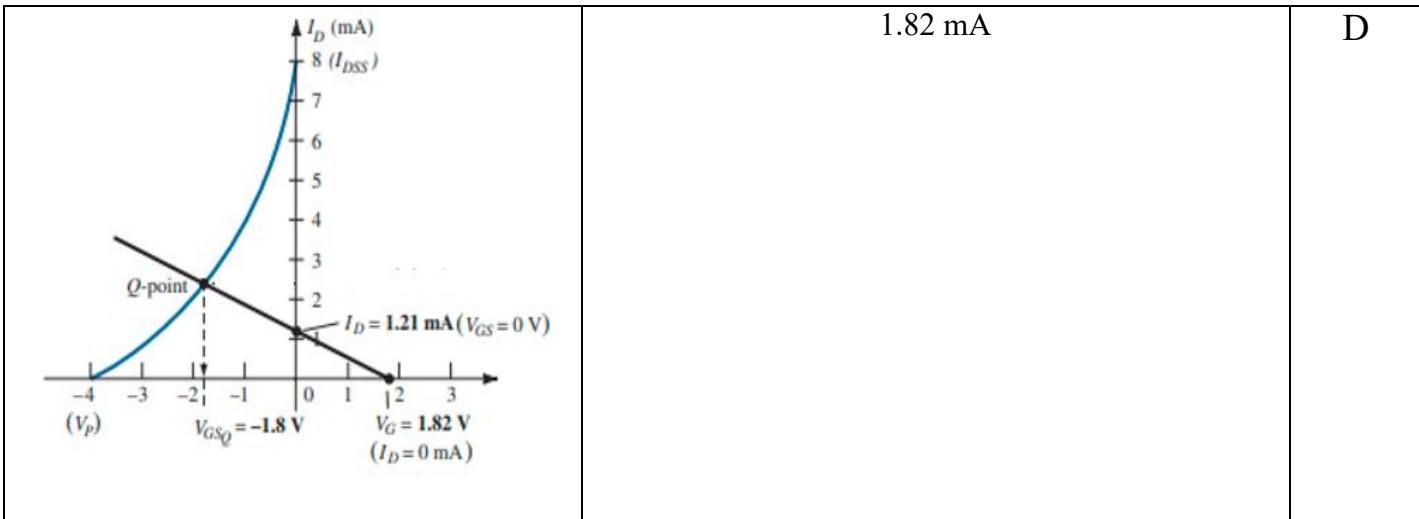

gate and drain	A
drain and source	B
gate and source	C
input and gate	D

Q42. What is the value of V_{GS} when $I_D = I_{DSS}$?


= Zero	A
> pinch-off voltage	B
< pinch-off voltage	C
= pinch-off voltage	D

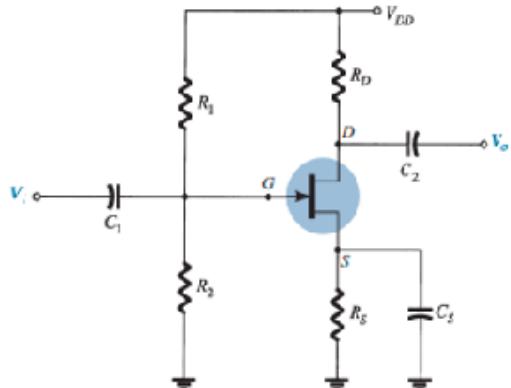
Q43. For the transfer characteristics of JFET (fixed bias circuit) shown the value of I_{DQ} ?

	5.6 mA	A
	6.5 mA	B



Q44. For the transfer characteristics of JFET (self bias circuit) shown the value of I_{DQ} ?

Q45. For the transfer characteristics of JFET (voltage divider circuit) shown the value of I_{DQ} ?



1.82 mA

D

Q46. For the the voltage divider circuit of FET transistor below, $V_G = \dots$

$$V_G = \frac{V_{DD} R_1}{R_1 + R_2}$$

$$V_G = \frac{V_{DD} R_2}{R_1 + R_2}$$

$$V_G = \frac{V_{DD}}{R_1 + R_2}$$

$$V_G = \frac{V_{DD} R_D}{R_1 + R_2}$$

A

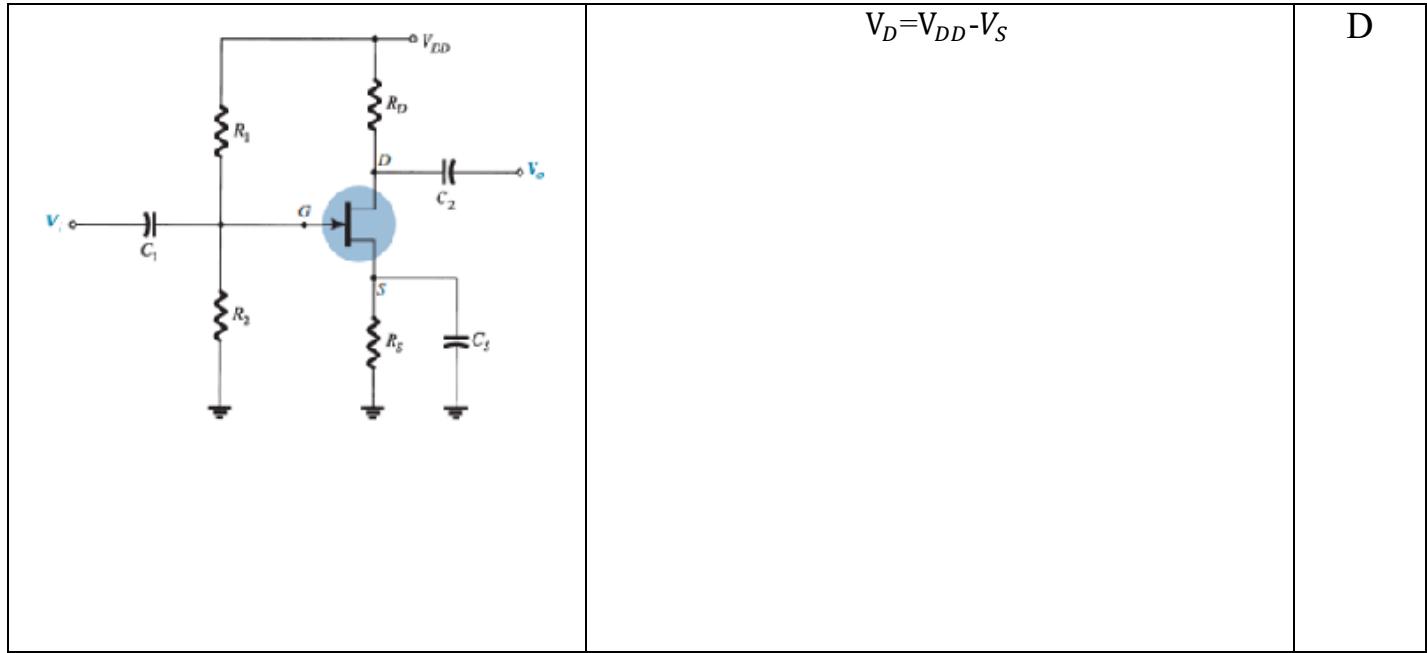
B

C

D

Q47. For the the voltage divider circuit of FET transistor below, $V_D = \dots$

$$V_D = V_{DD} - I_D R_S$$


A

$$V_D = V_{DD} - I_D R_D$$

B

$$V_D = 0$$

C

Q48. In a Self-bias JFET circuit shown below, V_{GS} is determined from the equation

.....

	$V_{GS} = V_{DD}$	A
	$V_{GS} = - I_D R_S$	B
	$V_{GS} = R_G - I_D R_S$	C
	$V_{DS} = V_G$	D

Q49. For the the voltage divider circuit of FET transistor $V_{GS} = \dots$

	$V_{GS} = V_G - I_D R_S$	A
	$V_{GS} = V_G - I_D R_2$	B
	$V_{GS} = V_G - I_D R_1$	C
	$V_{GS} = V_G - I_D R_D$	D

Q50. JFET transistor is a

current-controlled device	A
voltage-controlled device	B
power-controlled device	C
energy-controlled device	D

Q51. The depletion regions are wider toward the drain end of the channel because the reverse-bias voltage between the gate and the drain is

greater than that between the gate and the source.	A
less than that between the gate and the source.	B
equals infinity	C
equals zero	D

Q52. The output characteristic curve of a FET transistor is divided into:

saturation region and ohmic region	A
saturation and closed region	B
ohmic and cutoff region	C
source and gate region	D

Q53. Reverse biasing of the gate-source junction produces a depletion region in the n-channel and thus....

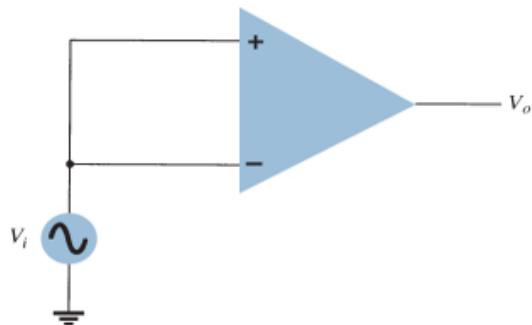
decreases its resistance	A
make it equal to zero	B
increases its resistance	C
make it equal to infinity	D

Q54. Input impedance at the gate is very high, thus the gate current

$= \infty$	A
$= I_D$	B
$= I_S$	C
$= \text{zero}$	D

Q55. The channel width can be controlled by varying the gate voltage, and thereby, can also be controlled

I_G	A
I_D	B
I_S	C


I_C	D
-------	---

Q56. The depletion regions are wider toward the drain end of the channel because :	
reverse-bias between gate and drain > reverse-bias between gate and source	A
reverse-bias between source and drain > reverse-bias between gate and source	B
reverse-bias between gate and drain < reverse-bias between gate and source	C
reverse-bias between source and drain > reverse-bias between gate and drain	D

PART 2

Operational Amplifier

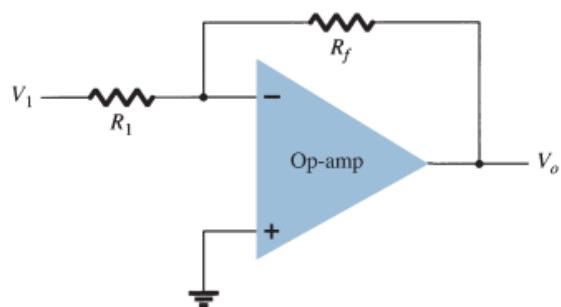
Q1. The gain of Operational Amplifier mode shown is.....

Very low

A

Very high

B


unity

C

zero

D

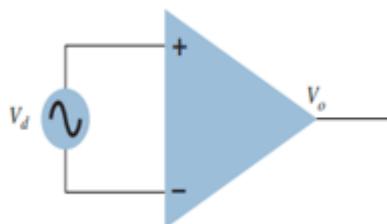
Q2. The output voltage of an OP-amp shown is:

$$V_o = -\frac{R_f}{R_1} V_i$$

A

$$V_o = -\frac{R_1}{R_f} V_i$$

B


$$V_o = \frac{R_f}{R_1} V_i$$

C

$$V_o = \left(1 + \frac{R_f}{R_1}\right) V_i$$

D

Q3. The gain of Operational Amplifier mode shown is.....

Very low

A

Very high

B

unity

C

zero

D

Q4. If the circuit of figure shown has $R_1 = 100\text{K}\Omega$ and $R_f = 500\text{ K}\Omega$,what output voltage results for an input of $V_1 = 2\text{v}$?

	8 v	A
	2 v	B
	2.5 v	C
	-10 v	D

Q5. The operational amplifier circuit shown in the figure works as

	Inverting amplifier	A
	Integrator	B
	Noninverting Amplifier	C
	Differentiator	D

Q6. Calculate the output voltage from the circuit of figure shown for an input of 120 μ V.

	12.12 mV	A
	11.12 V	B
	4 V	C
	-12.12 mV	D

Q7. Determine the output voltage for the circuit of figure below with a sinusoidal input of 2.5 mV.

	1 V	A
	-0.25 V	B
	-0.75 V	C
	2 V	D

Q8. The operational amplifier circuit shown in the figure works as.....

	Inverting amplifier	A
	Integrator	B
	Noninverting Amplifier	C
	Differentiator	D

Q9 . consider an input voltage $V1 = 1$ V to the integrator circuit of figure shown. The scale factor is.....

	-2	A
	1	B
	2	C
	-1	D

Q10. Calculate the output voltage for the circuit of figure shown. The inputs are $V1= 50$ mV $\sin(1000t)$ and $V2= 10$ mV $\sin(3000t)$

	$V_o= 0.5 \sin(1000t) + 0.33 \sin(3000t)$	A
--	---	---

	$V_o = -[5 \sin(1000t) + 33 \sin(3000t)]$	B
	$V_o = 5 \sin(1000t) + 33 \sin(3000t)$	C
	$V_o = -[0.5 \sin(1000t) + 0.33 \sin(3000t)]$	D

Q11. The operational amplifier circuit shown in the figure works as.....

	Inverting amplifier	A
	Integrator	B
	Noninverting Amplifier	C
	Differentiator	D

Q12. For the Voltage Buffer shown , the output voltage is

	$V_o = -V_i$	A
	$V_o = V_i$	B
	$V_o = \text{Zero}$	C
	$V_o = \infty$	D

Q13 Determine the output voltage for the circuit shown,if , $V_1=20$ mv and $V_2= 6$ mv

	14 mV	A
	26 mV	B

	10 mV	C
	40 mV	D

Q14 The output voltage of the circuit shown is.....

	$V_o = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$	A
	$V_o = \left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$	B
	$V_o = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$	C
	$V_o = \left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$	D

Q15. The scale factor of the circuit shown is.....

	RC	A
	$-\frac{R}{C}$	B
	-RC	C
	$-\frac{1}{RC}$	D

Q19. When step- input is given to an OP-amp integrator, the output will be:

ramp	A
------	---

Sinusoidal wave	B
Rectangular wave	C
Triangular wave	D

Q20. In differential-mode,.....

the gain is one	A
the outputs are of different amplitudes	B
opposite polarity signals are applied to the inputs	C
only one supply voltage is used	D

Q21. In the differential voltage gain & the common mode voltage gain of a differential amplifier are **48db** & **2db** respectively, then its common mode rejection ratio is.....

23dB	A
25dB	B
46dB	C
50dB	D

Q22. When a differential amplifier is operated single-ended,.....

the output is grounded	A
one input is grounded and signal is applied to the other	B
both inputs are connected together	C
the output is not inverted	D

Q23. Negative feedback.....

increases the input and output impedances	A
---	---

increases the input impedance and bandwidth	B
decreases the output impedance and bandwidth	C
does not affect impedance or bandwidth	D

Q24. A voltage follower

has a voltage gain of 1	A
is noninverting	B
has no feedback resistor	C
has all of these	D

Q25. The closed-loop voltage gain of an inverting amplifier equal to.....

the ratio of the input resistance to feedback resistance	A
the open-loop voltage gain	B
the feedback resistance divided by the input resistance	C
the input resistance	D

Q26. If ground is applied to the (+) terminal of an inverting OP-amp, the (-) terminal will

Not need an input resistor	A
Be virtual ground	B
Have high reverse current	C
Not invert the signal	D

Q27. For Multiple-stage of operational amplifier circuits ,if we have 3-Stages the output gain is

$A = A_1 + A_2 + A_3$	A
-----------------------	---

A=A1 A2 A3	B
A=(A1 A2 A3) /3	C
A=A1+ A2+ A3/3	D

Q28. The ideal OP-amp has the following characteristics:

Ri= ∞ ,Ro= 0 , A= ∞	A
Ri = 0 ,Ro = 0 , A = ∞	B
Ri = 0 ,Ro = ∞ , A = 0	C
Ri = ∞ ,Ro = ∞ , A = ∞	D

Q29. A noninverting closed loop op amp circuit generally has a gain factor

less than one	A
greater than one	B
of zero	C
equal to one	D

Q30. The common mode voltage gain is

smaller than differential voltage gain	A
equal to differential voltage gain	B
greater than differential voltage gain	C
none of the above	D

Q31. A common mode signal is applied to

the noninverting input	A
------------------------	---

the inverting input	B
both inputs	C
top of the tail resistor	D

Q32. For an OP-amp having differential gain A_v and common mode gain A_c the CMRR is given by:

$A_d A_c$	A
$\frac{A_d}{A_c}$	B
$\frac{A_c}{A_d}$	C
$A_d + 1$	D

Q33. Which of the following amplifier is used in a digital to analog converter?

Non inverter	A
Voltage follower	B
Summing Amplifier	C
integrator	D

Q34 The phase difference between the output and input signals in the inverting operational amplifier is equal to....

.....	
270^0	A
0^0	B
90^0	C
180^0	D

Q35. The operational amplifier has an output impedance

Less than 100Ω	A
-----------------------	---

Greater than 1 M Ω	B
Equal to ∞	C
Equal to 100 M Ω	D