Chapter one
“Random Variables”
1-Th concept of Random variables A0 gliall Kol puetiall o ggia
Definitions:

Given a random experiment with sample space §, Arandom variable (r.v.)

X is a function which assigns to each element w € § a real number X(w) in the
setE .
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¢ _ Suppose that an experiment consists of tossing a pair of unbiased dice , X be
arandom variable indicating the sum of the two faces :-
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And YP(X=x)=1
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Random Variable (r.v.)
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2- Distribution Function {D.F.) g sl Al
Definitions:

If X isarandom variable (r.v.) defined on the sample space §, the cumulative
distribution function (c. d. f.) or cumulative probability function (c. p. f.) of a
discrete random variable , denoted by F(x) & is defined by ;-

F(x) = P(X < x) forany real number
= X P(x;)
Properties :
The distribution function F{x) has following properties :-

1_F(e) = J}l_l:l;la F(x)=1 —

—— 0<F(x)<1
2_F(-w)= lim F(x) =0 __.f
3_F(x))<F(xp) ; if x5 x; X F’_"
rt.lﬂ e
T Lig)
4 Pla<x<b)= F(b)— F(a) forall a<b
P(x>b)=1- F(b) a b
o B
TPy
Pocdal - PLXgaY
?L‘-!. - ?kmj

Ex)

X
P(x}={3 , x=1,2,3
0 , other wise



Find ;
1_ Probability mass function
2_cumulative probability function
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